MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination

Author:

Wu XiaofangORCID,Nelson Marie,Basu Mousumi,Srinivasan Priya,Lazarski Christopher,Zhang Peng,Zheng Pan,Sandler Anthony DavidORCID

Abstract

BackgroundMYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated.MethodsImmune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models.ResultsAnalysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape.ConclusionsThis study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.

Funder

The EVAN Foundation

Catherine Blair Foundation

Michael Sandler Research Fund

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3