Methylglyoxal from gut microbes boosts radiosensitivity and radioimmunotherapy in rectal cancer by triggering endoplasmic reticulum stress and cGAS-STING activation

Author:

Zhou HanORCID,Wang Lei,Lin Zhiwen,Jiang Chenwei,Chen Xingte,Wang Kai,Liu Libin,Shao Lingdong,Pan Jianji,Li Jinluan,Zhang Da,Wu Junxin

Abstract

BackgroundPreoperative radiation therapy (preRT) is a fundamental aspect of neoadjuvant treatment for rectal cancer (RC), but the response to this treatment remains unsatisfactory. The combination of radiation therapy (RT) and immunotherapy (iRT) presents a promising approach to cancer treatment, though the underlying mechanisms are not yet fully understood. The gut microbiota may influence the response to RT and immunotherapy. Therefore, we aimed to identify the metabolism of gut microbiota to reverse radioresistance and enhance the efficacy of iRT.MethodsFecal and serum samples were prospectively collected from patients with locally advanced rectal cancer (LARC) who had undergone pre-RT treatment. Candidate gut microbiome-derived metabolites linked with radiosensitization were screened using 16s rRNA gene sequencing and ultrahigh-performance liquid chromatography-mass coupled with mass spectrometry. In vitro and in vivo studies were conducted to assess the radiosensitizing effects of the metabolites including the syngeneic CT26 tumor model and HCT116 xenograft tumor model, transcriptomics and immunofluorescence. The CT26 abscopal effect modeling was employed to evaluate the combined effects of metabolites on iRT.ResultsWe initially discovered the gut microbiota-associated metabolite, methylglyoxal (MG), which accurately predicts the response to preRT (Area Under Curve (AUC) value of 0.856) among patients with LARC. Subsequently, we observed that MG amplifies the RT response in RC by stimulating intracellular reactive oxygen species (ROS) and reducing hypoxia in the tumor in vitro and in vivo. Additionally, our study demonstrated that MG amplifies the RT-induced activation of the cyclic guanosine monophosphate AMP synthase-stimulator of interferon genes pathway by elevating DNA double-strand breaks. Moreover, it facilitates immunogenic cell death generated by ROS-mediated endoplasmic reticulum stress, consequently leading to an increase in CD8+T and natural killer cells infiltrated in the tumor immune microenvironment. Lastly, we discovered that the combination of anti-programmed cell death protein 1 (anti-PD1) therapy produced long-lasting complete responses in all irradiated tumor sites and half of the non-irradiated ones.ConclusionsOur research indicates that MG shows promise as a radiosensitizer and immunomodulator for RC. Furthermore, we propose that combining MG with iRT has great potential for clinical practice.

Funder

Fujian Provincial Clinical Research Center for Cancer Radiotherapy and Immunotherapy

Fujian Province Joint Funds for the Innovation of Science and Technology

Fujian Province Outstanding Youth Science Fund Projects

Fujian Clinical Research Center for Radiation and Therapy of Digestive, Respiratory and Genitourinary Malignancies

Fujian Province Natural Science Foundation

National Clinical Key Specialty Construction Program, Startup Fund for scientific research, Fujian Medical University

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3