Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies

Author:

Koyama Shohei,Nishikawa HiroyoshiORCID

Abstract

With the broad application of cancer immunotherapies such as immune checkpoint inhibitors in multiple cancer types, the immunological landscape in the tumor microenvironment (TME) has become enormously important for determining the optimal cancer treatment. Tumors can be immunologically divided into two categories: inflamed and non-inflamed based on the extent of immune cell infiltration and their activation status. In general, immunotherapies are preferable for the inflamed tumors than for non-inflamed tumors. Regulatory T cells (Tregs), an immunosuppressive subset of CD4+ T cells, play an essential role in maintaining self-tolerance and immunological homeostasis. In tumor immunity, Tregs compromise immune surveillance against cancer in healthy individuals and impair the antitumor immune response in tumor-bearing hosts. Tregs, therefore, accelerate immune evasion by tumor cells, leading to tumor development and progression in various types of cancer. Therefore, Tregs are considered to be a crucial therapeutic target for cancer immunotherapy. Abundant Tregs are observed in the TME in many types of cancer, both in inflamed and non-inflamed tumors. Diverse mechanisms of Treg accumulation, activation, and survival in the TME have been uncovered for different tumor types, indicating the importance of understanding the mechanism of Treg infiltration in each patient when selecting the optimal Treg-targeted therapy. Here, we review recent advances in the understanding of mechanisms leading to Treg abundance in the TME to optimize Treg-targeted therapy. Furthermore, in addition to the conventional strategies targeting cell surface molecules predominantly expressed by Tregs, reagents targeting molecules and signaling pathways specifically employed by Tregs for infiltration, activation, and survival in each tumor type are illustrated as novel Treg-targeted therapies. The effectiveness of immune precision therapy depends on conditions in the TME of each cancer patient.

Funder

Japan Science and Technology Agency

Japan Agency for Medical Research and Development

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3