New evaluation of the tumor immune microenvironment of non-small cell lung cancer and its association with prognosis

Author:

Shinohara Shuichi,Takahashi Yusuke,Komuro Hiroyasu,Matsui Takuya,Sugita Yusuke,Demachi-Okamura Ayako,Muraoka Daisuke,Takahara Hirotomo,Nakada Takeo,Sakakura Noriaki,Masago KatsuhiroORCID,Miyai Manami,Nishida Reina,Shomura Shin,Shigematsu Yoshiki,Hatooka Shunzo,Sasano Hajime,Watanabe Fumiaki,Adachi Katsutoshi,Fujinaga Kazuya,Kaneda Shinji,Takao Motoshi,Ohtsuka Takashi,Yamaguchi Rui,Kuroda Hiroaki,Matsushita HirokazuORCID

Abstract

BackgroundA better understanding of the tumor immune microenvironment (TIME) will facilitate the development of prognostic biomarkers and more effective therapeutic strategies in patients with lung cancer. However, little has been reported on the comprehensive evaluation of complex interactions among cancer cells, immune cells, and local immunosuppressive elements in the TIME.MethodsWhole-exome sequencing and RNA sequencing were carried out on 113 lung cancers. We performed single sample gene set enrichment analysis on TIME-related gene sets to develop a new scoring system (TIME score), consisting of T-score (tumor proliferation), I-score (antitumor immunity) and S-score (immunosuppression). Lung cancers were classified according to a combination of high or low T-score, I-score, and S-scores (eight groups; G1-8). Clinical and genomic features, and immune landscape were investigated among eight groups. The external data sets of 990 lung cancers from The Cancer Genome Atlas and 76 melanomas treated with immune checkpoint inhibitors (ICI) were utilized to evaluate TIME scoring and explore prognostic and predictive accuracy.ResultsThe representative histological type including adenocarcinoma and squamous cell carcinoma, and driver mutations such as epidermal growth factor receptor and TP53 mutations were different according to the T-score. The numbers of somatic mutations and predicted neoantigens were higher in Thi (G5-8) than Tlo (G1-4) tumors. Immune selection pressure against neoantigen expression occurred only in Thi and was dampened in Thi/Ilo (G5-6), possibly due to a reduced number of T cells with a high proportion of tumor specific but exhausted cells. Thi/Ilo/Shi (G5) displayed the lowest immune responses by additional immune suppressive mechanisms. The T-score, I-score and S-scores were independent prognostic factors, with survival curves well separated into eight groups with G5 displaying the worst overall survival, while the opposite group Tlo/Ihi/Slo (G4) had the best prognosis. Several oncogenic signaling pathways influenced on T-score and I-scores but not S-score, and PI3K pathway alteration correlated with poor prognosis in accordance with higher T-score and lower I-score. Moreover, the TIME score predicted the efficacy of ICI in patients with melanoma.ConclusionThe TIME score capturing complex interactions among tumor proliferation, antitumor immunity and immunosuppression could be useful for prognostic predictions or selection of treatment strategies in patients with lung cancer.

Funder

Japan Society for the Promotion of Science

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3