Cancer cell genotype associated tumor immune microenvironment exhibits differential response to therapeutic STING pathway activation in high-grade serous ovarian cancer

Author:

Shakfa Noor,Li Deyang,Conseil Gwenaelle,Lightbody Elizabeth D,Wilson-Sanchez Juliette,Hamade Ali,Chenard Stephen,Jawa Natasha A.,Laight Brian J.,Afriyie-Asante Afrakoma,Tyryshkin Kathrin,Koebel Martin,Koti MadhuriORCID

Abstract

BackgroundHigh-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy characterized by resistance to chemotherapy and high rates of recurrence. HGSC tumors display a high prevalence of tumor suppressor gene loss. Given the type 1 interferon regulatory function ofBRCA1andPTENgenes and their associated contrasting T-cell infiltrated and non-infiltrated tumor immune microenvironment (TIME) states, respectively, in this study we investigated the potential of stimulator of interferon genes (STING) pathway activation in improving overall survival via enhancing chemotherapy response, specifically in tumors with PTEN deficiency.MethodsExpression of PTEN protein was evaluated in tissue microarrays generated using pretreatment tumors collected from a cohort of 110 patients with HGSC. Multiplex immunofluorescence staining was performed to determine spatial profiles and density of selected lymphoid and myeloid cells. In vivo studies using the syngeneic murine HGSC cell lines, ID8-Trp53–/–;Pten–/–and ID8-Trp53–/–;Brca1–/–, were conducted to characterize the TIME and response to carboplatin chemotherapy in combination with exogenous STING activation therapy.ResultsPatient tumors with absence of PTEN protein exhibited a significantly decreased disease specific survival and intraepithelial CD68+ macrophage infiltration as compared with intact PTEN expression. In vivo studies demonstrated thatPten-deficient ovarian cancer cells establish an immunosuppressed TIME characterized by increased proportions of M2-like macrophages, GR1+MDSCs in the ascites, and reduced effector CD8+ cytotoxic T-cell function compared withBrca1-deficient cells; further, tumors from mice injected withPten-deficient ID8 cells exhibited an aggressive behavior due to suppressive macrophage dominance in the malignant ascites. In combination with chemotherapy, exogenous STING activation resulted in longer overall survival in mice injected withPten-deficient ID8 cells, reprogrammed intraperitoneal M2-like macrophages derived fromPten-deficient ascites to M1-like phenotype and rescued CD8+ cytotoxic T-cell activation.ConclusionsThis study reveals the importance of considering the influence of cancer cell intrinsic genetic alterations on the TIME for therapeutic selection. We establish the rationale for the optimal incorporation of interferon activating therapies as a novel combination strategy in PTEN-deficient HGSC.

Funder

Institute of Cancer Research

Canada Foundation for Innovation

Ontario Ministry of Research Innovation and Science; Early Research Award

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3