633 Dual-targeting of 4–1BB and OX40 with an ADAPTIR™ bispecific antibody enhances anti-tumor responses to solid tumor

Author:

Nelson Michelle,Miller Robert,Blahnik-Fagan Gabriele,Loh Lauren,Citters Danielle Van,Misher Lynda,Sprague Megan,Dasovich Maria,Barber Irene,Maggiora Kathy,Gruswitz Franz,Woodruff Brian,Huntington Kelsey,Guinn Aelish,Aguilar Megan,Daugherty Mollie,Haglin Elizabeth,Gross Jane,Pavlik Peter,McMahan Catherine,Bienvenue David,Hernandez-Hoyos Gabriela

Abstract

Background4-1BB (CD137) and OX40 (CD134) are critical activation-induced co-stimulatory receptors that regulate immune responses of activated T and NK cells by enhancing proliferation, cytokine production, survival, and cytolytic activity. A superagonist 4-1BB antibody has shown clinical activity but severe toxicities. APVO603, is a 4-1BB x OX40 targeting bispecific antibody with conditional agonism, activating these receptors only when both are co-engaged. The Fc portion was mutated to eliminate FcγR-mediated interactions. Co-stimulation through 4-1BB and OX40 has the potential to amplify the cytotoxic function and the number of activated T and NK cells in multiple solid tumor indications.1–2Methods scFv binding domains to 4-1BB and OX40 were optimized to increase affinity, function and stability, and then incorporated into the ADAPTIR™ bispecific antibody platform to produce the APVO603 lead candidate. NF-κB/luciferase reporter cell lines expressing OX40 or 4-1BB were initially used to assess the agonistic function of APVO603’s binding domains. Primary PBMC were sub-optimally stimulated with an anti-CD3 antibody and T and NK cell proliferation was assessed using Cell TraceTM-labelled PBMC. Cytokine secretion was measured at 48 hrs using Luminex-based assays. For in vitro tumor lysis studies, PBMC were co-cultured with tumor cells expressing a tumor-associated antigen (TAA) and activated with TAA x CD3 bispecific protein. 7-AAD expression was assessed on tumor cells at 72 hrs. The in vivo therapeutic efficacy of APVO603 was evaluated using a murine MB49 bladder cancer model in human 4-1BB and OX40 double knock-in mice.ResultsAPVO603 stimulates 4-1BB and OX40 NF-κB/luciferase reporter activity in a dose-dependent manner, and is strictly dependent on engagement of the reciprocal receptor to elicit 4-1BB or OX40 activity. In primary PBMC assays, APVO603 induces synergistic proliferation of CD4+, CD8+ T and NK cells when compared to OX40 or 4-1BB monospecific molecules with a wt Fc, either individually or in combination. Additionally, APVO603 enhances proinflammatory cytokine production and granzyme B expression, and augments in vitro tumor cell lysis induced by a TAAx CD3 engager. In vivo, APVO603 reduces growth of established MB49 tumors in human 4-1BB and OX40 double knock-in mice.ConclusionsAPVO603 is a dual-agonistic bispecific antibody that augments the effector function of activated CD4+ and CD8+ T and NK cells in a dose-dependent manner, and reduces growth of established tumors in vivo. This preclinical data, demonstrates conditional dual stimulation of 4-1BB and OX40 and supports further development of APVO603, a promising immuno-oncology therapeutic with potential for benefit in solid tumors.Ethics ApprovalTreatment of study animals was in accordance with conditions specified in the Guide for the Care and Use of Laboratory Animals, and the study protocol (ACUP 20) was approved by the Institutional Animal Care and Use Committee (IACUC).ReferencesBandyopadhyay S, Long M, Qui H, Hagymasi A, Slaiby A, Mihalyo M, Aguila H, Mittler R, Vella A, Adler A. Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation. J Immunol 2008;181(11):7728–37.Ryan J, Mittal P, Menoret A, Svedova J, Wasser J, Adler A, Vella A. A novel biologic platform elicits profound T cell costimuloaroty activity and antitumor immunity in mice. Cancer Immunol Immunother 2018;67(4):605–613.

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3