Dynamical modeling of proliferative-invasive plasticity and IFNγ signaling in melanoma reveals mechanisms of PD-L1 expression heterogeneity

Author:

Subhadarshini Seemadri,Sahoo Sarthak,Debnath Shibjyoti,Somarelli Jason A,Jolly Mohit KumarORCID

Abstract

BackgroundPhenotypic heterogeneity of melanoma cells contributes to drug tolerance, increased metastasis, and immune evasion in patients with progressive disease. Diverse mechanisms have been individually reported to shape extensive intra-tumor and inter-tumor phenotypic heterogeneity, such as IFNγ signaling and proliferative to invasive transition, but how their crosstalk impacts tumor progression remains largely elusive.MethodsHere, we integrate dynamical systems modeling with transcriptomic data analysis at bulk and single-cell levels to investigate underlying mechanisms behind phenotypic heterogeneity in melanoma and its impact on adaptation to targeted therapy and immune checkpoint inhibitors. We construct a minimal core regulatory network involving transcription factors implicated in this process and identify the multiple ‘attractors’ in the phenotypic landscape enabled by this network. Our model predictions about synergistic control of PD-L1 by IFNγ signaling and proliferative to invasive transition were validated experimentally in three melanoma cell lines—MALME3, SK-MEL-5 and A375.ResultsWe demonstrate that the emergent dynamics of our regulatory network comprising MITF, SOX10, SOX9, JUN and ZEB1 can recapitulate experimental observations about the co-existence of diverse phenotypes (proliferative, neural crest-like, invasive) and reversible cell-state transitions among them, including in response to targeted therapy and immune checkpoint inhibitors. These phenotypes have varied levels of PD-L1, driving heterogeneity in immunosuppression. This heterogeneity in PD-L1 can be aggravated by combinatorial dynamics of these regulators with IFNγ signaling. Our model predictions about changes in proliferative to invasive transition and PD-L1 levels as melanoma cells evade targeted therapy and immune checkpoint inhibitors were validated in multiple RNA-seq data sets from in vitro and in vivo experiments.ConclusionOur calibrated dynamical model offers a platform to test combinatorial therapies and provide rational avenues for the treatment of metastatic melanoma. This improved understanding of crosstalk among PD-L1 expression, proliferative to invasive transition and IFNγ signaling can be leveraged to improve the clinical management of therapy-resistant and metastatic melanoma.

Funder

Science and Engineering Research Board

National Cancer Institute

Ministry of Education, India

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3