Abstract
BackgroundMelanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens.MethodsHuman as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo.ResultsMCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model.ConclusionThe SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.
Funder
Hector Foundation
Else Kröner-Fresenius-Stiftung
m4 Award of the Bavarian Ministry of Economical Affairs, by the Bundesministerium für Bildung und Forschung
Wilhelm Sander-Stiftung
Fritz-Bender Foundation
Go-Bio initiative
Deutsche Krebshilfe
Ernst & Young Foundation
European Research Council Grant ARMOR-T
Melanoma Research Alliance Grants
Marie-Sklodowska-Curie Program Training Network for Optimizing Adoptive T Cell Therapy of Cancer by the H2020 Program of the European Union
Deutsche Forschungsgemeinschaft
Deutsche José-Carreras Leukämie Stiftung
International Doctoral Program i-Target: Immunotargeting of Cancer by the Elite Network of Bavaria
European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
Volkswagen Foundation
SFB-TRR 338/1
ERC proof-of-concept Grant
Bavarian Research Foundation
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献