Abstract
BackgroundAdoptive transfer of T cells is a burgeoning cancer therapeutic approach. However, the fate of the cells, once transferred, is most often unknown. We describe the first clinical experience with a non-invasive biomarker to assay the apoptotic cell fraction (ACF) after cell therapy infusion, tested in the setting of head and neck squamous cell carcinoma (HNSCC). A patient with HNSCC received autologous tumor-infiltrating lymphocytes (TILs) labeled with a perfluorocarbon (PFC) nanoemulsion cell tracer. Nanoemulsion, released from apoptotic cells, clears through the reticuloendothelial system, particularly the Kupffer cells of the liver, and fluorine-19 (19F) magnetic resonance spectroscopy (MRS) of the liver was used to non-invasively infer the ACF.MethodsAutologous TILs were isolated from a patient in their late 50s with relapsed, refractory human papillomavirus-mediated squamous cell carcinoma of the right tonsil, metastatic to the lung. A lung metastasis was resected for T cell harvest and expansion using a rapid expansion protocol. The expanded TILs were intracellularly labeled with PFC nanoemulsion tracer by coincubation in the final 24 hours of culture, followed by a wash step. At 22 days after intravenous infusion of TILs, quantitative single-voxel liver19F MRS was performed in vivo using a 3T MRI system. From these data, we model the apparent ACF of the initial cell inoculant.ResultsWe show that it is feasible to PFC-label ~7×1010TILs (F-TILs) in a single batch in a clinical cell processing facility, while maintaining >90% cell viability and standard flow cytometry-based release criteria for phenotype and function. Based on quantitative in vivo19F MRS measurements in the liver, we estimate that ~30% cell equivalents of adoptively transferred F-TILs have become apoptotic by 22 days post-transfer.ConclusionsSurvival of the primary cell therapy product is likely to vary per patient. A non-invasive assay of ACF over time could potentially provide insight into the mechanisms of response and non-response, informing future clinical studies. This information may be useful to developers of cytotherapies and clinicians as it opens an avenue to quantify cellular product survival and engraftment.
Funder
National Institutes of Health
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献