Abstract
BackgroundIn this study, we hypothesize that the ability of the protozoan Toxoplasma gondii to modulate immune response within the tumor might improve the therapeutic effect of immune checkpoint blockade. We examined the synergetic therapeutic activity of attenuated T. gondii RH ΔGRA17 strain and programmed death ligand-1 (PD-L1) treatment on both targeted and distal tumors in mice.MethodsThe effects of administration of T. gondii RH ΔGRA17 strain on the tumor volume and survival rate of mice bearing flank B16-F10, MC38, or LLC tumors were studied. We characterized the effects of ΔGRA17 on tumor biomarkers’ expression, PD-L1 expression, immune cells infiltrating the tumors, and expression of immune-related genes by using immunohistochemistry, immunofluorescence, flow cytometry, NanoString platform, and real-time quantitative PCR, respectively. The role of immune cells in the efficacy of ΔGRA17 plus PD-L1 blockade therapy was determined via depletion of immune cell subtypes.ResultsTreatment with T. gondii ΔGRA17 tachyzoites and anti-PD-L1 therapy significantly extended the survival of mice and suppressed tumor growth in preclinical mouse models of melanoma, Lewis lung carcinoma, and colon adenocarcinoma. Attenuation of the tumor growth was detected in the injected and distant tumors, which was associated with upregulation of innate and adaptive immune pathways. Complete regression of tumors was underpinned by late interferon-gamma-producing CD8+ cytotoxic T cells.ConclusionThe results from these models indicate that intratumoral injection of ΔGRA17 induced a systemic effect, improved mouse immune response, and sensitized immunologically ‘cold’ tumors and rendered them sensitive to immune checkpoint blockade therapy.
Funder
The Fund for Shanxi “1331 Project”
The State Key Laboratory of Veterinary Etiological Biology
National Natural Science Foundation of China
National Key Research and Development Program of China
Yunnan Expert Workstation
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献