Protection from experimental ventilator-induced acute lung injury by IL-1 receptor blockade

Author:

Frank James A,Pittet Jean-Francois,Wray Charlie,Matthay Michael A.

Abstract

Background: Clinical studies have shown that injurious mechanical ventilation is associated with elevated airspace and plasma levels of interleukin-1β (IL-1β); however, the potential therapeutic value of IL-1 inhibition in acute lung injury has not been thoroughly investigated. A study was undertaken to determine if IL-1 signaling is a necessary early event in the pathogenesis of experimental ventilator-induced lung injury (VILI). Methods: Mice deficient in IL-1 receptor type 1 (IL1R1) and rats treated with IL-1 receptor antagonist (IL-1Ra) were mechanically ventilated with high tidal volume (30 ml/kg) and the effect of IL-1 signaling blockade on lung injury severity was determined. Results: Permeability as measured by radiolabeled albumin flux was significantly lower in IL1R1 null mice compared with wild type mice during injurious ventilation (P<0.05). IL-1Ra significantly decreased protein permeability and pulmonary oedema in rats during injurious ventilation. IL-1Ra also decreased airspace and plasma levels of the chemokine CXCL1 and airspace neutrophils. IL-1Ra decreased expression of NOS2 and ICAM-1 mRNA in whole lung. Bronchoalveolar lavage fluid levels of RTI40, a marker of type I cell injury, were 2.5 times lower in following IL-1Ra treatment (P < 0.05). In isolated type II pneumocytes, IL-1β reduced electrical resistance and increased transepithelial permeability. Conclusions: IL-1 contributes to alveolar barrier dysfunction in VILI by promoting lung neutrophil recruitment, and by increasing epithelial injury and permeability. Because preserved alveolar barrier function is associated with better outcomes in patients with acute lung injury, these data support further testing of IL-1Ra for the treatment of acute lung injury.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3