Abstract
ObjectiveLifting postures are frequently implicated in back pain. We previously related responses to a static load with intrinsic spine shape, and here we investigate the role of lumbar spine shape in lifting kinematics.MethodsThirty healthy adults (18–65 years) performedfreestyle,stoopandsquatlifts with a weighted box (6–15 kg, self-selected) while being recorded by Vicon motion capture. Internal spine shape was characterised using statistical shape modelling (SSM) from standing mid-sagittal MRIs. Associations were investigated between spine shapes quantified by SSM and peak flexion angles.ResultsTwo SSM modes described variations in overall lumbar curvature (mode 1 (M1), 55% variance) and the evenness of curvature distribution (mode 2 (M2), 12% variance). M1 was associated with greater peak pelvis (r=0.38, p=0.04) and smaller knee flexion (r=–0.40, p=0.03) angles; individuals with greater curviness preferred to lift with a stooped lifting posture. This was confirmed by analysis of those individuals with very curvy or very straight spines (|M1|>1 SD). There were no associations between peak flexion angles and mode scores instooporsquattrials (p>0.05). Peak flexion angles were positively correlated betweenfreestyleandsquattrials but not betweenfreestyleandstooporsquatandstoop, indicating that individuals adjusted knee flexion while maintaining their preferred range of lumbar flexion and that ‘squatters’ adapted better to different techniques than ‘stoopers’.ConclusionSpinal curvature affects preferred lifting styles, and individuals with curvier spines adapt more easily to different lifting techniques. Lifting tasks may need to be tailored to an individual’s lumbar spine shape.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献