Abstract
ObjectivesTo assess the validity and reliability of ultrasound-derived interbony landmark distances as a proxy for MRI-derived intervertebral disc (IVD) height.MethodsThis is a cross-sectional criterion validity study. Twelve college-aged participants without current low back pain completed both MRI and ultrasound imaging of the lumbar spine in a prone position. Single-segment and multisegment distances between the spinous and mammillary processes at the lumbar segments (L2/L3, L3/L4, L4/L5) were measured twice using ultrasound and analysed digitally. Sagittal slices of the lumbar spine were taken via T1-weighted MRI and IVD height, and the overall distance between IVDs L2/L3 and L4/L5 was imaged once and measured twice.ResultsThere was moderate correlation between multilevel-based measurements (overall distance between L2 and L5, r=0.677, p=0.016) and the average across three levels (r=0.596, p=0.041) when using the spinous processes as bony landmarks. Single-segment measures were not significantly correlated (all: p>0.092). Accuracy and precision were better for the overall MRI-derived distance between the three IVDs from L2 and L5 MRI and the distance measured between the spinous processes L2–L5. There was excellent reliability within multiple measurements at each location, with intraclass correlation coefficient, ICC(3,1), ranging from 0.93 to 0.99 (95% CI 0.82 to 0.99) for ultrasound and from 0.98 to 0.99 (95% CI 0.92 to 0.99) for MRI.ConclusionFindings do not support the use of ultrasound imaging for estimating single-segment IVD height, yet it may be used to measure the change in distance over time with a certain degree of precision based on its excellent reliability.
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine