Abstract
BackgroundThis study aims to establish a reliable prediction model of progressive fibrosing interstitial lung disease (PF-ILD) in patients with systemic sclerosis (SSc)-ILD, to achieve early risk stratification and to help better in preventing disease progression.Methods304 SSc-ILD patients with no less than three pulmonary function tests within 6–24 months were included. We collected data at baseline and compared differences between SSc patients with and without PF-ILD. Least absolute shrinkage and selection operator regularisation regression and multivariable Cox regression were used to construct the prediction model, which were presented as nomogram and forest plot.ResultsAmong the 304 patients with SSc-ILD included, 92.1% were women, with a baseline average age of 46.7 years. Based on the 28 variables preselected by comparison between SSc patients without PF-ILD group (n=150) and patients with SSc PF-ILD group (n=154), a 9-variable prediction model was constructed, including age≥50 years (HR 1.8221, p=0.001), hyperlipidemia (HR 4.0516, p<0.001), smoking history (HR 3.8130, p<0.001), diffused cutaneous SSc subtype (HR 1.9753, p<0.001), arthritis (HR 2.0008, p<0.001), shortness of breath (HR 2.0487, p=0.012), decreased serum immunoglobulin A level (HR 2.3900, p=0.002), positive anti-Scl-70 antibody (HR 1.9573, p=0.016) and usage of cyclophosphamide/mycophenolate mofetil (HR 0.4267, p<0.001). The concordance index after enhanced bootstrap resampling adjustment was 0.874, while the optimism-corrected Brier Score was 0.144 in internal validation.ConclusionThis study developed the first prediction model for PF-ILD in patients with SSc-ILD, and internal validation showed favourable accuracy and stability of the model.
Funder
National High-Level Hospital Clinical Research Funding