Validation of a machine learning approach to estimate Clinical Disease Activity Index Scores for rheumatoid arthritis

Author:

Spencer Alison K.,Bandaria Jigar,Leavy Michelle B.ORCID,Gliklich Benjamin,Su Zhaohui,Curhan Gary,Boussios Costas

Abstract

ObjectiveDisease activity measures, such as the Clinical Disease Activity Index (CDAI), are important tools for informing treatment decisions and monitoring patient outcomes in rheumatoid arthritis (RA). Yet, documentation of CDAI scores in electronic medical records and other real-world data sources is inconsistent, making it challenging to use these data for research. The purpose of this study was to validate a machine learning model to estimate CDAI scores for patients with RA using clinical notes.MethodsA machine learning model was developed to estimate CDAI score values using clinical notes from a specific rheumatology visit. Data from the OM1 RA Registry were used to create a training cohort of 56 177 encounters and a separate validation cohort of 18 726 encounters, 11 985 of which passed a model-derived confidence filter; all included encounters had both a clinician-recorded CDAI score and a clinical note. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), positive predictive value (PPV) and negative predictive value (NPV), calculated using a binarised version of the outcome. The Spearman’s R and Pearson’s R values were also calculated.ResultsThe model had a PPV of 0.80, NPV of 0.84 and AUC of 0.88 when evaluating performance using the binarised version of the outcome. The model had a Spearman’s R value of 0.72 and a Pearson’s R value of 0.69 when evaluating performance using the continuous CDAI numeric scores.ConclusionA machine learning model estimates CDAI scores from clinical notes with good performance. Application of the model to real-world data sets may allow estimated CDAI scores to be used for research purposes.

Publisher

BMJ

Subject

Immunology,Immunology and Allergy,Rheumatology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3