Immunoproteasome subunit β5i promotes perifascicular muscle atrophy in dermatomyositis by upregulating RIG-I

Author:

Zhang Lu,Xia Qisheng,Li Wenli,Liu Qingyan,Zhang Lining,Tian Xiaolan,Ye Lifang,Wang Guochun,Peng QinglinORCID

Abstract

BackgroundPerifascicular atrophy is a unique pathological hallmark in dermatomyositis (DM)-affected muscles; however, the mechanism underlying this process remains unclear. In this study, we aimed to investigate the potential role of the immunoproteasome subunit β5i and retinoic acid-inducible gene-I (RIG-I) in DM-associated muscle atrophy.MethodsThe expression of β5i and RIG-I in the muscles of 16 patients with DM was examined by PCR, western blotting and immunohistochemistry. The associations between β5i and RIG-I expression levels and muscle disease severity were evaluated. Lentivirus transduction was used to overexpress β5i in human skeletal muscle myoblasts (HSMMs) and consequent cell functional changes were studied in vitro.Resultsβ5i and RIG-I expression in the muscle of patients with DM was significantly increased and closely associated with muscle disease severity. Immunohistochemistry and immunofluorescence analyses showed the marked colocalised expression of β5i and RIG-I in perifascicular myofibres. β5i overexpression in HSMMs significantly upregulated RIG-I, the muscle atrophy marker MuRF1, type I IFN-related proteins (MxA and IFNβ) and NF-κB pathway-related proteins (pIκBα, pIRF3 and pNF-κBp65). In addition, the viability of HSMMs decreased significantly after β5i overexpression and was partly recovered by treatment with a β5i inhibitor (PR957). Moreover, activation of RIG-I by pppRNA upregulated IFNβ and MuRF1 and reduced the cell viability of HSMMs.ConclusionThe immunoproteasome subunit β5i promotes perifascicular muscle atrophy in DM via RIG-I upregulation; our findings suggest a pathomechanistic role of β5i and RIG-I in DM-associated muscle damage, highlighting these components as potential therapeutic targets for the treatment of DM.

Funder

National High Level Hospital

China-Japan Friendship Hospital

National Natural Science Foundation of China

Publisher

BMJ

Subject

Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3