Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis

Author:

Schlereth MajaORCID,Mutlu Melek Yalcin,Utz Jonas,Bayat Sara,Heimann Tobias,Qiu Jingna,Ehring Chris,Liu Chang,Uder Michael,Kleyer ArndORCID,Simon DavidORCID,Roemer Frank,Schett Georg,Breininger KatharinaORCID,Fagni FilippoORCID

Abstract

ObjectivesTo train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.MethodsHand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort.ResultsIn total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset.ConclusionsWe developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.

Funder

d.hip Campus-Bavarian Aim

ERC Synergy grant 4D Nanoscope

European Union 's Horizon 2020 research and innovation program

Deutsche Forschungsgemeinschaft

Innovative Medicines Initiative

Bundesministerium für Bildung und Forschung

MIRACLE Friedrich-Alexander University Erlangen

2022 GRAPPA Pilot Research Grant

EFPIA

Publisher

BMJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3