Inflammatory biomarkers predicting long-term remission and active disease in juvenile idiopathic arthritis: a population-based study of the Nordic JIA cohort

Author:

Glerup MiaORCID,Kessel Christoph,Foell DirkORCID,Berntson Lillemor,Fasth Anders,Myrup Charlotte,Nordal Ellen,Rypdal Veronika,Rygg Marite,Arnstad Ellen Dalen,Peltoniemi Suvi,Aalto Kristiina,Schleifenbaum Susanne,Høllsberg Malene Noer,Bilgrau Anders Ellern,Herlin Troels

Abstract

ObjectivesTo assess the ability of baseline serum biomarkers to predict disease activity and remission status in juvenile idiopathic arthritis (JIA) at 18-year follow-up (FU) in a population-based setting.MethodsClinical data and serum levels of inflammatory biomarkers were assessed in the longitudinal population-based Nordic JIA cohort study at baseline and at 18-year FU. A panel of 16 inflammatory biomarkers was determined by multiplexed bead array assay. We estimated both univariate and multivariate logistic regression models on binary outcomes of disease activity and remission with baseline variables as explanatory variables.ResultsOut of 349 patients eligible for the Nordic JIA cohort study, 236 (68%) had available serum samples at baseline. We measured significantly higher serum levels of interleukin 1β (IL-1β), IL-6, IL-12p70, IL-13, MMP-3, S100A9 and S100A12 at baseline in patients with active disease at 18-year FU than in patients with inactive disease. Computing receiver operating characteristics illustrating the area under the curve (AUC), we compared a conventional prediction model (gender, age, joint counts, erythrocyte sedimentation rate, C reactive protein) with an extended model that also incorporated the 16 baseline biomarkers. Biomarker addition significantly improved the ability of the model to predict activity/inactivity at the 18-year FU, as evidenced by an increase in the AUC from 0.59 to 0.80 (p=0.02). Multiple regression analysis revealed that S100A9 was the strongest predictor of inactive disease 18 years after disease onset.ConclusionBiomarkers indicating inflammation at baseline have the potential to improve evaluation of disease activity and prediction of long-term outcomes.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3