Derivation and validation of a simple multidimensional index incorporating exercise capacity parameters for survival prediction in idiopathic pulmonary fibrosis

Author:

Chandel AbhimanyuORCID,Pastre Jean,Valery Solène,King Christopher S,Nathan Steven D

Abstract

IntroductionThe gender-age-physiology (GAP) index is an easy-to-use baseline mortality prediction model in idiopathic pulmonary fibrosis (IPF). The GAP index does not incorporate exercise capacity parameters such as 6 min walk distance (6MWD) or exertional hypoxia. We evaluated if the addition of 6MWD and exertional hypoxia to the GAP index improves survival prediction in IPF.MethodsPatients with IPF were identified at a tertiary care referral centre. Discrimination and calibration of the original GAP index were assessed. The cohort was then randomly divided into a derivation and validation set and performance of the GAP index with the addition of 6MWD and exertional hypoxia was evaluated. A final model was selected based on improvement in discrimination. Application of this model was then evaluated in a geographically distinct external cohort.ResultsThere were 562 patients with IPF identified in the internal cohort. Discrimination of the original GAP index was measured by a C-statistic of 0.676 (95% CI 0.635 to 0.717) and overestimated observed risk. 6MWD and exertional hypoxia were strongly predictive of mortality. The addition of these variables to the GAP index significantly improved model discrimination. A revised index incorporating exercise capacity parameters was constructed and performed well in the internal validation set (C-statistic: 0.752; 95% CI 0.701 to 0.802, difference in C-statistic compared with the refit GAP index: 0.050; 95% CI 0.004 to 0.097) and external validation set (N=108 (C-statistic: 0.780; 95% CI 0.682 to 0.877)).ConclusionA simple point-based baseline-risk prediction model incorporating exercise capacity predictors into the original GAP index may improve prognostication in patients with IPF.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3