Deriving a prediction rule for short stay admission in trauma patients admitted at a major trauma centre in Australia

Author:

Dinh Michael M,Bein Kendall J,Byrne Chris M,Gabbe Belinda,Ivers Rebecca

Abstract

IntroductionThe aim of this study was to derive and internally validate a prediction rule for short stay admissions (SSAs) in trauma patients admitted to a major trauma centre.MethodsA retrospective study of all trauma activation patients requiring inpatient admission at a single inner city major trauma centre in Australia between 2007 and 2011 was conducted. Logistic regression was used to derive a multivariable model for the outcome of SSA (length of stay ≤2 days excluding deaths or intensive care unit admission). Model discrimination was tested using area under receiver operator characteristic curve analyses and calibration was tested using the Hosmer-Lemeshow test statistic. Validation was performed by splitting the dataset into derivation and validation datasets and further tested using bootstrap cross validation.ResultsA total of 2593 patients were studied and 30% were classified as SSAs. Important independent predictors of SSA were injury severity score ≤8 (OR 7.8; 95% CI 5.0 to 11.9), Glasgow coma score 14–15 (OR 3.2; 95% CI 1.8 to 5.4), no need for operative intervention (OR 2.2; 95% CI 1.6 to 3.2) and age < 65 years. (OR 1.7; 95% CI 1.2 to 2.6). The overall model had an area under receiver operator characteristic curve of 0.84 (95% CI 0.82 to 0.87) for the derivation dataset. After bootstrap cross validation the area under the curve of the final model was 0.83 (95% CI 0.81 to 0.84).ConclusionsWe report a prediction rule that could be used to establish admission criteria for a trauma short stay unit. Further studies are required to prospectively validate the prediction rule.

Publisher

BMJ

Subject

Critical Care and Intensive Care Medicine,General Medicine,Emergency Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3