Triage in major incidents: development and external validation of novel machine learning-derived primary and secondary triage tools

Author:

Xu Yuanwei,Malik NabeelaORCID,Chernbumroong Saisakul,Vassallo James,Keene Damian,Foster Mark,Lord Janet,Belli Antonio,Hodgetts Timothy,Bowley Douglas,Gkoutos George

Abstract

BackgroundMajor incidents (MIs) are an important cause of death and disability. Triage tools are crucial to identifying priority 1 (P1) patients—those needing time-critical, life-saving interventions. Existing expert opinion-derived tools have limited evidence supporting their use. This study employs machine learning (ML) to develop and validate models for novel primary and secondary triage tools.MethodsAdults (16+ years) from the UK Trauma Audit and Research Network (TARN) registry (January 2008–December 2017) served as surrogates for MI victims, with P1 patients identified using predefined criteria. The TARN database was split chronologically into model training and testing (70:30) datasets. Input variables included physiological parameters, age, mechanism and anatomical location of injury. Random forest, extreme gradient boosted tree, logistic regression and decision tree models were trained to predict P1 status, and compared with existing tools (Battlefield Casualty Drills (BCD) Triage Sieve, CareFlight, Modified Physiological Triage Tool, MPTT-24, MSTART, National Ambulance Resilience Unit Triage Sieve and RAMP). Primary and secondary candidate models were selected; the latter was externally validated on patients from the UK military’s Joint Theatre Trauma Registry (JTTR).ResultsModels were internally tested in 57 979 TARN patients. The best existing tool was the BCD Triage Sieve (sensitivity 68.2%, area under the receiver operating curve (AUC) 0.688). Inability to breathe spontaneously, presence of chest injury and mental status were most predictive of P1 status. A decision tree model including these three variables exhibited the best test characteristics (sensitivity 73.0%, AUC 0.782), forming the candidate primary tool. The proposed secondary tool (sensitivity 77.9%, AUC 0.817), applicable via a portable device, includes a fourth variable (injury mechanism). This performed favourably on external validation (sensitivity of 97.6%, AUC 0.778) in 5956 JTTR patients.ConclusionNovel triage tools developed using ML outperform existing tools in a nationally representative trauma population. The proposed primary tool requires external validation prior to consideration for practical use. The secondary tool demonstrates good external validity and may be used to support decision-making by healthcare workers responding to MIs.

Funder

MRC Heath Data Research UK

MAESTRIA

NIHR Birmingham ECMC

Nanocommons H2020-EU

Surgical Reconstruction and Microbiology Research Centre

Publisher

BMJ

Subject

Critical Care and Intensive Care Medicine,General Medicine,Emergency Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3