eXtreme Gradient Boosting-based method to classify patients with COVID-19

Author:

Ramón Antonio1,Torres Ana Maria2,Milara Javier13,Cascón Joaquín2,Blasco Pilar1,Mateo Jorge2ORCID

Affiliation:

1. Pharmacy Department, General University Hospital Consortium of Valencia, Valencia, Spain

2. Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain

3. Pharmacy Department, University of Valencia, Valencia, Spain

Abstract

Different demographic, clinical and laboratory variables have been related to the severity and mortality following SARS-CoV-2 infection. Most studies applied traditional statistical methods and in some cases combined with a machine learning (ML) method. This is the first study to date to comparatively analyze five ML methods to select the one that most closely predicts mortality in patients admitted with COVID-19. The aim of this single-center observational study is to classify, based on different types of variables, adult patients with COVID-19 at increased risk of mortality. SARS-CoV-2 infection was defined by a positive reverse transcriptase PCR. A total of 203 patients were admitted between March 15 and June 15, 2020 to a tertiary hospital. Data were extracted from the electronic medical record. Four supervised ML algorithms (k-nearest neighbors (KNN), decision tree (DT), Gaussian naïve Bayes (GNB) and support vector machine (SVM)) were compared with the eXtreme Gradient Boosting (XGB) method proposed to have excellent scalability and high running speed, among other qualities. The results indicate that the XGB method has the best prediction accuracy (92%), high precision (>0.92) and high recall (>0.92). The KNN, SVM and DT approaches present moderate prediction accuracy (>80%), moderate recall (>0.80) and moderate precision (>0.80). The GNB algorithm shows relatively low classification performance. The variables with the greatest weight in predicting mortality were C reactive protein, procalcitonin, glutamyl oxaloacetic transaminase, glutamyl pyruvic transaminase, neutrophils, D-dimer, creatinine, lactic acid, ferritin, days of non-invasive ventilation, septic shock and age. Based on these results, XGB is a solid candidate for correct classification of patients with COVID-19.

Funder

Universidad de Castilla-La Mancha

Instituto de Salud Carlos III

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3