Comprehensive molecular assessment of mismatch repair deficiency in Lynch associated ovarian cancers using next generation sequencing panel

Author:

Kim Soyoun RachelORCID,Oldfield Leslie,Tone Alicia,Pollett Aaron,Pedersen Stephanie,Wellum Johanna,Cesari Matthew,Lajkosz Katherine,Pugh Trevor J,Ferguson Sarah Elizabeth

Abstract

ObjectivesAbnormalities in mismatch repair have been described in ovarian cancer, but few studies have examined the causes of mismatch repair deficiency (MMRd). To address this, we completed targeted mutational and methylation sequencing on MMRd ovarian cancer cases. The objective of this study was to explore the molecular mechanism of MMRd using our targeted next generation sequencing panel.MethodsNewly diagnosed non-serous/mucinous ovarian cancers (n=215) were prospectively recruited from three cancer centers in Ontario, Canada, between 2015 and 2018. Tumors were reflexively assessed for mismatch repair protein by immunohistochemistry. Matched tumor–normal MMRd cases were analyzed on a custom next generation sequencing panel to identify germline and somatic mutations, copy number variants, rearrangements, and promoter methylation in mismatch repair and associated genes.ResultsOf 215 cases, 28 (13%) were MMRd. The MMRd cohort had a median age of 52.3 years (range 33.6–62.2), with mostly stage I (50%) and grade 1 or 2 endometrioid histotype (57%). Of the 28 cases, 22 were available for molecular analysis, and Lynch syndrome was detected in 50% of MMRd cases (11/22; seven ovarian cancer and four synchronous ovarian and endometrial cancer: sevenMSH6, twoMLH1, onePMS2, and oneMSH2). An explanation for the observed mismatch repair phenotype was available for 22/22 deficient cases, including 12 MLH1/PMS2 deficient (nine somatic methylation, one bi-allelic somatic deletion, and two pathogenic germline variant), one PMS2 deficient (one pathogenic germline variant), seven MSH6 deficient (seven pathogenic germline variant), and two MSH2/MSH6 deficient (one pathogenic germline variant and one bi-allelic somatic mutation). Concordance between clinical germline testing and panel sequencing results was 100%.ConclusionsUse of our custom next generation sequencing panel allowed for the streamlined assessment of hereditary and somatic causes of MMRd in ovarian cancers.

Funder

Canadian Cancer Society

Publisher

BMJ

Subject

Obstetrics and Gynecology,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3