Changes in the tumor immune microenvironment during disease progression in clear cell ovarian cancer

Author:

Woo Ha Young,Kim Na Yeon,Jun Jinok,Lee Jung-Yun,Nam Eun JiORCID,Kim Sang WunORCID,Kim Sung-Hoon,Kim Young-Tae,Lee Yong JaeORCID

Abstract

ObjectiveThe tumor immune microenvironment in ovarian clear cell carcinoma has not been clearly defined. We analyzed the immunological changes from treatment-naive to recurrence to correlate them with clinical outcomes.MethodWe compared the changes in immune infiltration of advanced-stage ovarian clear cell carcinoma samples before treatment and at the time of recurrence via immunohistochemistry (Programmed Cell Death-ligand 1 (PD-L1), cluster of differentiation 8 (CD8+), forkhead box P3 (Foxp3+)), tumor-infiltrating lymphocytes (TIL), and next-generation sequencing (54 patients). We analyzed the association between platinum sensitivity status and tumor immune microenvironment.ResultsImmunohistochemistry revealed significantly increased PD-L1 (p=0.048) and CD8+T cells (p=0.022) expression levels after recurrence. No significant differences were observed in TIL density or Foxp3+T cells. There was no significant correlation between TIL, PD-L1, CD8+T cell, and Foxp3+T cell levels in treatment-naive tumors and survival outcomes. The most common genomic alterations werePIK3CA(41.7%) andARID1A(41.7%) mutations. There were no differences in the immunological changes or survival outcomes according toPIK3CAandARID1Amutations. Patients with recurrent platinum-sensitive disease showed higher TIL expression levels. There were no significant differences in PD-L1, CD8+T cells, or Foxp3+T cells between platinum-sensitive and platinum-resistant diseases.ConclusionWe characterized the tumor immune microenvironment in patients with advanced-stage ovarian clear cell carcinoma. PD-L1 and CD8+T cell expression significantly increased after recurrence. Whether this could be used to select patients for immunotherapy in the recurrence setting should be investigated.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3