Artificial intelligence and visual inspection in cervical cancer screening

Author:

Nakisige CarolynORCID,de Fouw Marlieke,Kabukye Johnblack,Sultanov Marat,Nazrui Naheed,Rahman Aminur,de Zeeuw Janine,Koot Jaap,Rao Arathi P,Prasad Keerthana,Shyamala Guruvare,Siddharta Premalatha,Stekelenburg Jelle,Beltman Jogchum Jan

Abstract

IntroductionVisual inspection with acetic acid is limited by subjectivity and a lack of skilled human resource. A decision support system based on artificial intelligence could address these limitations. We conducted a diagnostic study to assess the diagnostic performance using visual inspection with acetic acid under magnification of healthcare workers, experts, and an artificial intelligence algorithm.MethodsA total of 22 healthcare workers, 9 gynecologists/experts in visual inspection with acetic acid, and the algorithm assessed a set of 83 images from existing datasets with expert consensus as the reference. Their diagnostic performance was determined by analyzing sensitivity, specificity, and area under the curve, and intra- and inter-observer agreement was measured using Fleiss kappa values.ResultsSensitivity, specificity, and area under the curve were, respectively, 80.4%, 80.5%, and 0.80 (95% CI 0.70 to 0.90) for the healthcare workers, 81.6%, 93.5%, and 0.93 (95% CI 0.87 to 1.00) for the experts, and 80.0%, 83.3%, and 0.84 (95% CI 0.75 to 0.93) for the algorithm. Kappa values for the healthcare workers, experts, and algorithm were 0.45, 0.68, and 0.63, respectively.ConclusionThis study enabled simultaneous assessment and demonstrated that expert consensus can be an alternative to histopathology to establish a reference standard for further training of healthcare workers and the artificial intelligence algorithm to improve diagnostic accuracy.

Funder

European Union Horizon's 2020

Ministry of Science and Technology, Department of Biomedical Technology in India

Publisher

BMJ

Subject

Obstetrics and Gynecology,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3