Abstract
Background/aimsAlthough measurements of the Bruch’s membrane opening minimum rim width (BMO-MRW) and retinal nerve fibre layer thickness (RNFLT) with optical coherence tomography (OCT) have been widely adopted in the diagnostic evaluation of glaucoma, there is no consensus on the diagnostic criteria to define BMO-MRW and RNFLT abnormalities. This study investigated the sensitivities and specificities of different diagnostic criteria based on the OCT classification reports for detection of glaucoma.Methods340 eyes of 137 patients with glaucoma and 87 healthy individuals, all with axial length ≤26mm, had global and sectoral BMO-MRW and RNFLT measured with Spectralis OCT (Heidelberg Engineering). Six diagnostic criteria were examined: global measurement below the fifth or the first percentile; ≥1 sector measurement below the fifth or the first percentile; superotemporal and/or inferotemporal measurement below the fifth or the first percentile. The sensitivities and specificities of BMO-MRW/RNFLT assessment for detection of glaucoma (eyes with visual field (VF) defects) were compared.ResultsAmong the six criteria examined, superotemporal and/or inferotemporal measurement below the fifth percentile showed the highest sensitivities and specificities for glaucoma detection. Abnormal superotemporal and/or inferotemporal RNFLT attained a higher sensitivity than abnormal superotemporal and/or inferotemporal BMO-MRW to detect mild glaucoma (mean VF MD: −3.32±1.59 dB) (97.9% and 88.4%, respectively, p=0.006), and glaucoma (mean VF MD: −9.36±8.31 dB) (98.4% and 93.6%, respectively, p=0.006), at the same specificity (96.1%).ConclusionsSuperotemporal and/or inferotemporal RNFLT/MRW below the fifth percentile yield the best diagnostic performance for glaucoma detection with RNFLT attains higher sensitivities than MRW at the same specificity in eyes without high myopia.
Funder
Hong Kong Research Grants Council
Subject
Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献