Author:
Jang Sun Young,Park Seong Jun,Chae Min Kyung,Lee Joon H,Lee Eun Jig,Yoon Jin Sook
Abstract
AimTo examine the role of microRNA-146a (miR-146a) in the regulation of fibrosis in an in vitro model of Graves’ orbitopathy (GO).MethodsOrbital fat/connective tissues were harvested from patients with GO and non-GO for primary orbital fibroblast cultures. The effects of transforming growth factor-β (TGF-β), a potent cytokine that promotes fibrosis, on miR-146a expression were analysed in GO and non-GO orbital fibroblasts using quantitative real-time PCR. The effects of overexpressed miR-146a on TGF-β-induced fibrotic markers were examined in GO orbital fibroblasts by western blot analysis. Expression ofSma and Mad related family (Smad) 4/tumour necrosis factor receptor-associated factor 6 (TRAF6) after transfection of miR-146a mimics or inhibitors were examined.ResultsTGF-β induced an increase in miR-146a expression in orbital fibroblasts from patients with GO in a time-dependent and concentration-dependent manner. miR-146a mimics further decreased the production of TGF-β-induced fibronectin, collagen Iα and α-smooth muscle actin protein. The Smad4 and TRAF6 protein levels were significantly decreased by miR-146a mimics, compared with control mimics, and significantly increased on inhibition of miR-146a production compared with a control.ConclusionsmiR-146a plays a role as a negative regulator in the production of TGF-β-induced fibrotic markers. Thus, miR-146a may be involved in the regulation of fibrosis in orbital fibroblasts from patients with GO.
Funder
Yonsei University, College of Medicine
National Research Foundation of Korea
Subject
Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献