Abstract
BackgroundPathological myopia is one of the leading causes of blindness globally. Lower birth weight (BW) within the normal range has been reported to increase the risk of myopia, although findings conflict. We sought to estimate the causal effect of BW on refractive error using Mendelian randomisation (MR), under the assumption of a linear relationship.MethodsGenetic variants associated with BW were identified from meta-analysis of a genome-wide association study (GWAS) for self-reported BW in 162 039 UK Biobank participants and a published Early Growth Genetics (EGG) consortium GWAS (n=26 836). We performed a one-sample MR analysis in 39 658 unrelated, adult UK Biobank participants (independent of the GWAS sample) using an allele score for BW as instrumental variable. A two-sample MR sensitivity analysis and conventional ordinary least squares (OLS) regression analyses were also undertaken.ResultsIn OLS analysis, BW showed a small, positive association with refractive error: +0.04 D per SD increase in BW (95% CI 0.02 to 0.07; p=0.002). The one-sample MR-estimated causal effect of BW on refractive error was higher, at +0.28 D per SD increase in BW (95% CI 0.05 to 0.52, p=0.02). A two-sample MR analysis provided similar causal effect estimates, with minimal evidence of directional pleiotropy.ConclusionsOur study suggests lower BW within the normal range is causally associated with a more myopic refractive error. However, the impact of the causal effect was modest (range 1.00 D covering approximately 95% of the population).
Funder
Global Education Program of the Russian Federation government
National Institute for Health Research
Subject
Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献