Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis

Author:

Spain Rebecca I,Liu Liang,Zhang Xinbo,Jia Yali,Tan Ou,Bourdette Dennis,Huang David

Abstract

BackgroundQuantitative assessment of optic nerve damage is important in the evaluation of optic neuritis (ON) and multiple sclerosis (MS).ObjectiveTo detect optic nerve damage using optical coherence tomography (OCT) and OCT angiography in MS.MethodsPeripapillary retinal nerve fibre layer (NFL) thickness, macular ganglion cell complex (GCC) thickness and Optic Nerve Head Flow Index (ONH-FI) were measured. The ONH-FI was defined as flow signal averaged over the optic disc. Diagnostic accuracy was evaluated by the area under the receiver-operating characteristics curve (AROC).ResultsSixty-eight eyes of 45 MS participants and 55 eyes of 32 healthy controls (HCs) were analysed. Of MS eyes, 25 had a history of ON (MS+ON) and 43 didn’t (MS−ON). MS−ON and MS+ON eyes had reductions in ONH-FI (p=0.031 and p=0.001, respectively), GCC thickness (p=0.245 and p<0.001, respectively), and NFL thickness (p=0.003 and p=0.024, respectively), compared with HCs. The highest AROC (0.940) was achieved by the logistic regression combination of all three variables, which was significantly higher than other variables (p=0.018).ConclusionMS produces both retinal structural loss and decreased ONH perfusion in MS eyes with and without history of ON. The combination of perfusion and structural measurements enhances detection of optic nerve damage in MS. OCT angiography may be a useful additional retinal marker in evaluation of ON in MS.

Funder

unrestricted departmental funding from Research to Prevent Blindness

Oregon Health & Science University (OHSU) foundation, NSFC

Career Development Award from the Department of Veterans Affairs

Medical Research Foundation of Oregon

NIH

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3