Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography

Author:

Sun Sukkyu,Ha Ahnul,Kim Young KookORCID,Yoo Byeong Wook,Kim Hee Chan,Park Ki HoORCID

Abstract

Background/AimsTo evaluate, with spectral-domain optical coherence tomography (SD-OCT), the glaucoma-diagnostic ability of a deep-learning classifier.MethodsA total of 777 Cirrus high-definition SD-OCT image sets of the retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) of 315 normal subjects, 219 patients with early-stage primary open-angle glaucoma (POAG) and 243 patients with moderate-to-severe-stage POAG were aggregated. The image sets were divided into a training data set (252 normal, 174 early POAG and 195 moderate-to-severe POAG) and a test data set (63 normal, 45 early POAG and 48 moderate-to-severe POAG). The visual geometry group (VGG16)-based dual-input convolutional neural network (DICNN) was adopted for the glaucoma diagnoses. Unlike other networks, the DICNN structure takes two images (both RNFL and GCIPL) as inputs. The glaucoma-diagnostic ability was computed according to both accuracy and area under the receiver operating characteristic curve (AUC).ResultsFor the test data set, DICNN could distinguish between patients with glaucoma and normal subjects accurately (accuracy=92.793%, AUC=0.957 (95% CI 0.943 to 0.966), sensitivity=0.896 (95% CI 0.896 to 0.917), specificity=0.952 (95% CI 0.921 to 0.952)). For distinguishing between patients with early-stage glaucoma and normal subjects, DICNN’s diagnostic ability (accuracy=85.185%, AUC=0.869 (95% CI 0.825 to 0.879), sensitivity=0.921 (95% CI 0.813 to 0.905), specificity=0.756 (95% CI 0.610 to 0.790)]) was higher than convolutional neural network algorithms that trained with RNFL or GCIPL separately.ConclusionThe deep-learning algorithm using SD-OCT can distinguish normal subjects not only from established patients with glaucoma but also from patients with early-stage glaucoma. The deep-learning model with DICNN, as trained by both RNFL and GCIPL thickness map data, showed a high diagnostic ability for discriminatingpatients with early-stage glaucoma from normal subjects.

Funder

Seoul National University Hospital

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3