Deep learning-based signal-independent assessment of macular avascular area on 6×6 mm optical coherence tomography angiogram in diabetic retinopathy: a comparison to instrument-embedded software

Author:

Xiong Honglian,You Qi ShengORCID,Guo YukunORCID,Wang Jie,Wang Bingjie,Gao Liqin,Flaxel Christina J,Bailey Steven TORCID,Hwang Thomas S,Jia YaliORCID

Abstract

SynopsisA deep-learning-based macular extrafoveal avascular area (EAA) on a 6×6 mm optical coherence tomography (OCT) angiogram is less dependent on the signal strength and shadow artefacts, providing better diagnostic accuracy for diabetic retinopathy (DR) severity than the commercial software measured extrafoveal vessel density (EVD).AimsTo compare a deep-learning-based EAA to commercial output EVD in the diagnostic accuracy of determining DR severity levels from 6×6 mm OCT angiography (OCTA) scans.MethodsThe 6×6 mm macular OCTA scans were acquired on one eye of each participant with a spectral-domain OCTA system. After excluding the central 1 mm diameter circle, the EAA on superficial vascular complex was measured with a deep-learning-based algorithm, and the EVD was obtained with commercial software.ResultsThe study included 34 healthy controls and 118 diabetic patients. EAA and EVD were highly correlated with DR severity (ρ=0.812 and −0.577, respectively, both p<0.001) and visual acuity (r=−0.357 and 0.420, respectively, both p<0.001). EAA had a significantly (p<0.001) higher correlation with DR severity than EVD. With the specificity at 95%, the sensitivities of EAA for differentiating diabetes mellitus (DM), DR and severe DR from control were 80.5%, 92.0% and 100.0%, respectively, significantly higher than those of EVD 11.9% (p=0.001), 13.6% (p<0.001) and 15.8% (p<0.001), respectively. EVD was significantly correlated with signal strength index (SSI) (r=0.607, p<0.001) and shadow area (r=−0.530, p<0.001), but EAA was not (r=−0.044, p=0.805 and r=−0.046, p=0.796, respectively). Adjustment of EVD with SSI and shadow area lowered sensitivities for detection of DM, DR and severe DR.ConclusionMacular EAA on 6×6 mm OCTA measured with a deep learning-based algorithm is less dependent on the signal strength and shadow artefacts, and provides better diagnostic accuracy for DR severity than EVD measured with the instrument-embedded software.

Funder

Research to Prevent Blindness

National Eye Institute

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3