Relationship of macular ganglion cell complex thickness to choroidal microvasculature drop-out in primary open-angle glaucoma

Author:

Micheletti Eleonora,Moghimi Sasan,El-Nimri Nevin,Nishida TakashiORCID,Suh Min HeeORCID,Proudfoot James A,Kamalipour Alireza,Zangwill Linda MORCID,Weinreb Robert NORCID

Abstract

Background/aimsTo investigate the rate of ganglion cell complex (GCC) thinning in primary open-angle glaucoma (POAG) patients with and without deep-layer microvasculature drop-out (MvD).MethodsPOAG patients who had at least 1.5 years of follow-up and a minimum of three visits were included from the Diagnostic Innovations in Glaucoma Study. MvD was detected at baseline by optical coherence tomography angiography (OCT-A). Area and angular circumference of MvD were evaluated on en face choroidal vessel density images and horizontal B-scans. Rates of global and hemisphere GCC thinning were compared in MvD and non-MvD eyes using linear mixed-effects models.ResultsThirty-six eyes with MvD and 37 eyes without MvD of 63 patients were followed for a mean of 3.3 years. In 30 out of 36 eyes, MvD was localised in the inferotemporal region. While mean baseline visual field mean deviation was similar between the two groups (p=0.128), global GCC thinning was significantly faster in eyes with MvD than in those without MvD (mean differences: −0.50 (95% CI −0.83 to –0.17) µm/year; p=0.003)). Presence of MvD, area and angular circumference of MvD were independently associated with a faster rate of thinning (p=0.002, p=0.031 and p=0.013, respectively).ConclusionIn POAG eyes, GCC thinning is faster in eyes with MvD. Detection of MvD in OCT-A images can assist clinicians to identify patients who are at higher risk for central macula thinning and glaucomatous progression and may require more intensive management.

Funder

BrightFocus Foundation

Tobacco-Related Disease Research Program

National Glaucoma Research Program

Research to Prevent Blindness

National Institutes of Health

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3