Urocortin-positive nerve fibres and cells are present in the human choroid

Author:

Kaser-Eichberger Alexandra,Platzl Christian,Wolfmeier Heidi,Trost Andrea,Horn Anja,Barnerssoi Miriam,Strohmaier Clemens,Schroedl FalkORCID

Abstract

BackgroundChoroidal vascular regulation is mediated by the autonomic nervous system in order to gain proper blood flow control. While the mechanisms behind this control are unknown, neuroregulatory peptides are involved in this process. To better understand choroidal function, we investigate the presence of urocortin-1 (UCN), a neuroregulatory peptide with vascular effects, in the human choroid and its possible intrinsic and extrinsic origin.MethodsHuman choroid and eye-related cranial ganglia (superior cervical ganglion- SCG, ciliary ganglion-CIL, pterygopalatine ganglion-PPG, trigeminal ganglion-TRI) were prepared for immunohistochemistry against UCN, protein–gene product 9.5 (PGP9.5), substance P (SP), tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT). For documentation, confocal laser scanning microscopy was used.ResultsIn choroidal stroma, UCN-immunoreactivity was present in nerve fibres, small cells and intrinsic choroidal neurons (ICN). Some UCN+ nerve fibres colocalised for VAChT, while others were VAChT. A similar situation was found with SP: some UCN+ nerve fibres showed colocalisation for SP, while others lacked SP. Colocalisation for UCN and TH was not observed. In eye-related cranial ganglia, only few cells in the SCG, PPG and TRI were UCN+, while many cells of the CIL displayed weak UCN immunoreactivity.ConclusionUCN is part of the choroidal innervation. UCN+/VAChT+ fibres could derive from the few cells of the PPG or cells of the CIL, if these indeed supply the choroid. UCN+/SP+ fibres might originate from ICN, or the few UCN+ cells detected in the TRI. Further studies are necessary to establish UCN function in the choroid and its implication for choroidal autonomic control.

Funder

Research Fund of Paracelsus Medical University

Anniversary Fund of the Austrian National Bank

Deutsche Forschungsgemeinschaft

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The structure and function of the human choroid;Annals of Anatomy - Anatomischer Anzeiger;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3