Quantification of vascular and neuronal changes in the peripapillary retinal area secondary to diabetic retinopathy

Author:

Frizziero Luisa,Parrozzani Raffaele,Londei Davide,Pilotto Elisabetta,Midena EdoardoORCID

Abstract

PurposeTo investigate and quantify peripapillary vascular and neuronal changes secondary to diabetic retinopathy, using spectral-domain optical coherence tomography (OCT) and OCT angiography (OCTA).DesignThis was a cross-sectional study.Methods51 eyes of 51 patients affected by non-proliferative diabetic retinopathy (NPDR) and 19 age-matched healthy control eyes underwent full ophthalmic examination, including OCT and OCTA in the peripapillary area. Vessel area density (VAD), vessel length fraction (VLF) and vessel diameter index (VDI) were quantified in a ring-shaped region of interest of each OCTA image. Capillaries and larger vessels were separately analysed. The thickness of the peripapillary retinal nerve fibre layer (pRNFL) and macular ganglion cell complex (GCC) was also analysed.ResultsVAD and VLF of peripapillary capillaries were significantly reduced in NPDR eyes, along with the progression of NPDR (p<0.05). VDI was significantly reduced in mild (p=0.0093) and moderate (p=0.0190) NPDR eyes, but not in severe NPDR (p=0.0841). Larger peripapillary vessels showed a significant increase of both VAD and VDI in NPDR eyes. pRNFL and GCC thickness decreased in NPDR eyes, reaching statistical significance only for GCC. No statistically significant correlation was found between perfusion parameters and pRNFL and GCC thickness.ConclusionsRetinal capillary remodelling in NPDR involves the peripapillary vascularisation too, as confirmed by OCTA quantitative parameters. The peripapillary macrovasculature and microvasculature need to be separately evaluated. The lack of direct correlation between peripapillary capillaries changes and the loss of retinal nerve fibres suggests that neuronal damage cannot be simply considered secondary to the microvascular one.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3