Abstract
PurposeTo examine the normative profile of retinal nerve fibre layer (RNFL) thickness and ocular parameters based on spectral-domain optical coherence tomography (SD-OCT) and its associations with related parameters among the Chinese population.MethodsThis population-based cohort Handan Eye Study (HES) recruited participants aged≥30 years. All subjects underwent a standardised ophthalmic examination. Peripapillary RNFL thickness was obtained using SD-OCT. Mixed linear models were adopted to evaluate the correlation of RNFL thickness with ocular parameters as well as systemic factors. R V.3.6.1 software was used for statistical analysis.Results3509 subjects (7024 eyes) with the average age of 55.54±10.37 were collected in this analysis. Overall mean RNFL thickness measured was 113.46±10.90 µm, and the thickest quadrant of parapapillary RNFL was the inferior quadrant, followed by the superior quadrant, the nasal quadrant and the temporal quadrant. In the multivariate linear regression model, thinner RNFL thickness was remarkable association with male (p<0.001), older age (p<0.001), increased body mass index (>30, p=0.018), absence of diabetes (p=0.009), history of cataract surgery (p=0.001), higher intraocular pressure (p=0.007), lower spherical equivalent (p<0.001) and increased axial length (p=0.048).ConclusionsIn non-glaucoma individuals, this difference of RNFL thickness in Chinese population should be noted in making disease diagnoses. Meanwhile, multiple ocular and systemic factors are closely related to the thickness of RNFL. Our findings further emphasise the need to demonstrate ethnic differences in RNFL thickness and the specificity of associated ocular and systemic factors, as well as to develop better normative databases worldwide.Trial registration numberHES was registered in Chinese Clinical Trial Registry website, and the registry number was ChiCTR-EOC-17013214.
Funder
Beijing Traditional Chinese Medicine Technology Development Fund Project
National Natural Science Foundation of China
Subject
Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献