Predicting the 10-year risk of cataract surgery using machine learning techniques on questionnaire data: findings from the 45 and Up Study

Author:

Wang WeiORCID,Han XiaotongORCID,Zhang Jiaqing,Shang Xianwen,Ha Jason,Liu ZhenzhenORCID,Zhang Lei,Luo LixiaORCID,He MingguangORCID

Abstract

Background/aimsTo investigate the feasibility and accuracy of using machine learning (ML) techniques on self-reported questionnaire data to predict the 10-year risk of cataract surgery, and to identify meaningful predictors of cataract surgery in middle-aged and older Australians.MethodsBaseline information regarding demographic, socioeconomic, medical history and family history, lifestyle, dietary and self-rated health status were collected as risk factors. Cataract surgery events were confirmed by the Medicare Benefits Schedule Claims dataset. Three ML algorithms (random forests [RF], gradient boosting machine and deep learning) and one traditional regression algorithm (logistic model) were compared on the accuracy of their predictions for the risk of cataract surgery. The performance was assessed using 10-fold cross-validation. The main outcome measures were areas under the receiver operating characteristic curves (AUCs).ResultsIn total, 207 573 participants, aged 45 years and above without a history of cataract surgery at baseline, were recruited from the 45 and Up Study. The performance of gradient boosting machine (AUC 0.790, 95% CI 0.785 to 0.795), RF (AUC 0.785, 95% CI 0.780 to 0.790) and deep learning (AUC 0.781, 95% CI 0.775 to 61 0.786) were robust and outperformed the traditional logistic regression method (AUC 0.767, 95% CI 0.762 to 0.773, all p<0.05). Age, self-rated eye vision and health insurance were consistently identified as important predictors in all models.ConclusionsThe study demonstrated that ML modelling was able to reasonably accurately predict the 10-year risk of cataract surgery based on questionnaire data alone and was marginally superior to the conventional logistic model.

Funder

National Natural Science Foundation of China

NHMRC Investigator Grant

Construction Project of High-Level Hospitals in Guangdong Province

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3