Abstract
BackgroundEarly neurological deterioration (END) is a serious complication in patients with large vessel occlusion (LVO) stroke. However, modalities to monitor neurological function after endovascular treatment (EVT) are lacking. This study aimed to evaluate the diagnostic accuracy of a quantitative electroencephalography (qEEG) system for detecting END.MethodsIn this prospective, nested case–control study, we included 47 patients with anterior circulation LVO stroke and 34 healthy adults from different clinical centers in Tianjin, China, from May 2023 to January 2024. Patients with stroke underwent EEG at admission and after EVT. The diagnostic accuracy of qEEG features for END was evaluated by receiver operating characteristic curve analysis, and the feasibility was evaluated by the percentage of artifact-free data and device-related adverse events.Results14 patients with stroke had END (29.8%, 95% CI 16.2% to 43.4%), with most developed within 12 hours of recanalization (n=11). qEEG features showed significant correlations with National Institutes of Health Stroke Scale score and infarct volume. After matching, 13 patients with END and 26 controls were included in the diagnostic analysis. Relative alpha power demonstrated the highest diagnostic accuracy for the affected and unaffected hemispheres. The optimal electrode positions were FC3/4 in the unaffected hemisphere, and F7/8 and C3/4 in the affected hemisphere. No device-related adverse events were reported.ConclusionThe qEEG system exhibits a high diagnostic accuracy for END and may be a promising tool for monitoring neurological function. The identification of optimal electrode positions may enhance device convenience.Clinical trial registrationChiCTR 2300070829.
Funder
Tianjin Municipal Health Commission
Tianjin Municipal Science and Technology Program