Abstract
BackgroundSurface modification of flow-diverting stents has been explored to reduce thrombus-related complications that may arise under clinical use. This study investigated the thromboresistant properties of the flow redirection endoluminal device (FRED) X, a flow diverter treated with a copolymer of poly(2-methoxyethyl acrylate) (PMEA; X Technology).MethodsThe performance of FRED, FRED X, and Pipeline Flex with Shield Technology (sPED) was evaluated in an in vitro blood loop model. Blood activation level was assessed by the concentration of thrombin-antithrombin complex (TAT), β-thromboglobulin (β-TG), and platelet count, and qualitatively by scanning electron microscopy (SEM). Cellular adhesion characteristics were measured using human aortic endothelial cells that were seeded on flat sheets mimicking the surface of FRED, FRED X, and sPED, and evaluated with fluorescence microscopy. Statistical comparisons were conducted using one-way analysis of variance (ANOVA) with Tukey post hoc tests.ResultsFRED X, sPED, and control blood loops showed significantly reduced blood activation levels (TAT and β-TG) compared with FRED (p<0.01). Consequently, FRED showed a significant decrease in platelet count compared with FRED X, sPED, and control loops (p<0.01). SEM imaging showed the lowest accumulation of blood cell-like deposits on FRED X compared with sPED and FRED, while FRED had the highest accumulation. Endothelial cells adhered and were widely spread on X Technology-treated sheets, while minimal cell adhesion was observed on phosphorylcholine-treated sheets.ConclusionThe X Technology surface modification of FRED X demonstrated superior thromboresistant properties over untreated FRED while maintaining comparable cellular adhesion. Taken together, these properties may help mitigate material-related thromboembolic complications.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献