Abstract
BackgroundVisual perception of catheters and guidewires on x-ray fluoroscopy is essential for neurointervention. Endovascular robots with teleoperation capabilities are being developed, but they cannot ‘see’ intravascular devices, which precludes artificial intelligence (AI) augmentation that could improve precision and autonomy. Deep learning has not been explored for neurointervention and prior works in cardiovascular scenarios are inadequate as they only segment device tips, while neurointervention requires segmentation of the entire structure due to coaxial devices. Therefore, this study develops an automatic and accurate image-based catheter segmentation method in cerebral angiography using deep learning.MethodsCatheters and guidewires were manually annotated on 3831 fluoroscopy frames collected prospectively from 40 patients undergoing cerebral angiography. We proposed a topology-aware geometric deep learning method (TAG-DL) and compared it with the state-of-the-art deep learning segmentation models, UNet, nnUNet and TransUNet. All models were trained on frontal view sequences and tested on both frontal and lateral view sequences from unseen patients. Results were assessed with centerline Dice score and tip-distance error.ResultsThe TAG-DL and nnUNet models outperformed TransUNet and UNet. The best performing model was nnUNet, achieving a mean centerline-Dice score of 0.98 ±0.01 and a median tip-distance error of 0.43 (IQR 0.88) mm. Incorporating digital subtraction masks, with or without contrast, significantly improved performance on unseen patients, further enabling exceptional performance on lateral view fluoroscopy despite not being trained on this view.ConclusionsThese results are the first step towards AI augmentation for robotic neurointervention that could amplify the reach, productivity, and safety of a limited neurointerventional workforce.
Funder
John S. Dunn Foundation
Ting Tsung and Wei Fong Chao Family Foundation
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献