Robotic Diagnostic Cerebral Angiography: A Multicenter Experience of 113 Patients

Author:

Beaman CharlesORCID,Gautam Ayushi,Peterson CatherineORCID,Kaneko Naoki,Ponce LucianoORCID,Saber HamidrezaORCID,Khatibi Kasra,Morales Jose,Kimball David,Lipovac Jacob Ridge,Narsinh Kazim HORCID,Baker AmandaORCID,Caton M Travis,Smith Eric RORCID,Nour May,Szeder Viktor,Jahan Reza,Colby Geoffrey P,Cord Branden JORCID,Cooke Daniel L,Tateshima Satoshi,Duckwiler Gary,Waldau BenORCID

Abstract

BackgroundNeurointerventional robotic systems have potential to reduce occupational radiation, improve procedural precision, and allow for future remote teleoperation. A limited number of single institution case reports and series have been published outlining the safety and feasibility of robot-assisted diagnostic cerebral angiography.MethodsThis is a multicenter, retrospective case series of patients undergoing diagnostic cerebral angiography at three separate institutions – University of California, Davis (UCD); University of California, Los Angeles (UCLA); and University of California, San Francisco (UCSF). The equipment used was the CorPath GRX Robotic System (Corindus, Waltham, MA).ResultsA total of 113 cases were analyzed who underwent robot-assisted diagnostic cerebral angiography from September 28, 2020 to October 27, 2022. There were no significant complications related to use of the robotic system including stroke, arterial dissection, bleeding, or pseudoaneurysm formation at the access site. Using the robotic system, 88 of 113 (77.9%) cases were completed successfully without unplanned manual conversion. The principal causes for unplanned manual conversion included challenging anatomy, technical difficulty with the bedside robotic cassette, and hubbing out of the robotic system due to limited working length. For robotic operation, average fluoroscopy time was 13.2 min (interquartile range (IQR), 9.3 to 16.8 min) and average cumulative air kerma was 975.8 mGY (IQR, 350.8 to 1073.5 mGy).ConclusionsRobotic cerebral angiography with the CorPath GRX Robotic System is safe and easily learned by novice users without much prior manual experience. However, there are technical limitations such as a short working length and an inability to support 0.035” wires which may limit its widespread adoption in clinical practice.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3