Two-stage convolutional neural network for segmentation and detection of carotid web on CT angiography

Author:

Kuang HulinORCID,Tan Xianzhen,Bala Fouzi,Huang Jialiang,Zhang Jianhai,Alhabli Ibrahim,Benali Faysal,Singh Nishita,Ganesh AravindORCID,Coutts Shelagh B,Almekhlafi Mohammed AORCID,Goyal Mayank,Hill Michael DORCID,Qiu Wu,Menon Bijoy K

Abstract

BackgroundCarotid web (CaW) is a risk factor for ischemic stroke, mainly in young patients with stroke of undetermined etiology. Its detection is challenging, especially among non-experienced physicians.MethodsWe included patients with CaW from six international trials and registries of patients with acute ischemic stroke. Identification and manual segmentations of CaW were performed by three trained radiologists. We designed a two-stage segmentation strategy based on a convolutional neural network (CNN). At the first stage, the two carotid arteries were segmented using a U-shaped CNN. At the second stage, the segmentation of the CaW was first confined to the vicinity of the carotid arteries. Then, the carotid bifurcation region was localized by the proposed carotid bifurcation localization algorithm followed by another U-shaped CNN. A volume threshold based on the derived CaW manual segmentation statistics was then used to determine whether or not CaW was present.ResultsWe included 58 patients (median (IQR) age 59 (50–75) years, 60% women). The Dice similarity coefficient and 95th percentile Hausdorff distance between manually segmented CaW and the algorithm segmented CaW were 63.20±19.03% and 1.19±0.9 mm, respectively. Using a volume threshold of 5 mm3, binary classification detection metrics for CaW on a single artery were as follows: accuracy: 92.2% (95% CI 87.93% to 96.55%), precision: 94.83% (95% CI 88.68% to 100.00%), sensitivity: 90.16% (95% CI 82.16% to 96.97%), specificity: 94.55% (95% CI 88.0% to 100.0%), F1 measure: 0.9244 (95% CI 0.8679 to 0.9692), area under the curve: 0.9235 (95%CI 0.8726 to 0.9688).ConclusionsThe proposed two-stage method enables reliable segmentation and detection of CaW from head and neck CT angiography.

Funder

Vascular and Interventional Neurology

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3