Overloaded transnidal pressure gradient as the hemodynamic mechanism leading to arteriovenous malformation rupture: a quantitative analysis using intravascular pressure monitoring and color-coded digital subtraction angiography

Author:

Zhang YukunORCID,Chen YuORCID,Li Ruinan,Ma Li,Han HezeORCID,Li ZhipengORCID,Zhang HaibinORCID,Yuan KexinORCID,Zhao Yang,Jin Weitao,Chen Pingting,Zhou Wanting,Ye Xun,Li Youxiang,Wang ShuoORCID,Chen Xiaolin,Zhao Yuanli

Abstract

BackgroundThe hemodynamics of brain arteriovenous malformations (AVMs) may have implications for hemorrhage. This study aimed to explore the hemodynamics of ruptured AVMs by direct microcatheter intravascular pressure monitoring (MIPM) and indirect quantitative digital subtraction angiography (QDSA).MethodsWe recruited patients with AVMs at a tertiary neurosurgery center from October 2020 to March 2023. In terms of MIPM, we preoperatively super-selected a predominant feeding artery and main draining vein through angiography to measure intravascular pressure before embolization. In processing of QDSA, we adopted previously standardized procedure for quantitative hemodynamics analysis of pre-embolization digital subtraction angiography (DSA), encompassing main feeding artery, nidus, and the main draining vein. Subsequently, we investigated the correlation between AVM rupture and intravascular pressure from MIPM, as well as hemodynamic parameters derived from QDSA. Additionally, we explored the interrelationships between hemodynamic indicators in both dimensions.ResultsAfter strict screening of patients, our study included 10 AVMs (six ruptured and four unruptured). We found that higher transnidal pressure gradient (TPG) (53.00±6.36 vs 39.25±8.96 mmHg, p=0.042), higher feeding artery pressure (FAP) (72.83±5.46 vs 65.00±6.48 mmHg, p=0.031) and higher stasis index of nidus (3.54±0.73 vs 2.43±0.70, p=0.043) were significantly correlated with AVM rupture. In analysis of interrelationships between hemodynamic indicators in both dimensions, a strongly positive correlation (r=0.681, p=0.030) existed between TPG and stasis index of nidus.ConclusionsTPG and FAP from MIPM platform and nidus stasis index from QDSA platform were correlated with AVM rupture, and both were positively correlated, suggesting that higher pressure load within nidus may be the central mechanism leading to AVM rupture.

Funder

Science Foundation of Peking University International Hospital

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3