Effects of Electroacupuncture on Uterine Morphology and Expression of Oestrogen Receptors in Ovariectomised Rats

Author:

Ma Shulan12,Li Dongju1,Feng Yi2,Jiang Jianwei2,Shen Bo3

Affiliation:

1. Training Center of Medical Experiments, Basic Medical School, Fudan University, Shanghai, China

2. Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China

3. Institute of Radiation Medicine, Fudan University, Shanghai, China

Abstract

Aim To observe the effects of electroacupuncture (EA) on uterine morphology and expression of oestrogen receptor (ER) α and β in ovariectomised (OVX) rats. Methods Thirty female Sprague-Dawley rats with regular 4-day oestrus cycles were divided into a sham operation group (Control, n=10) and two OVX groups that remained untreated (OVX group, n=10) or received EA treatment (OVX+EA group, n=10). In the latter group, EA was applied at CV4, CV3, SP6 and bilateral Zigong (30 min per day) for 3 days. The effects of EA on uterine morphology were observed by H&E staining. Quantitative real-time reverse transcription-PCR (qRT-PCR) and Western blotting were used to measure ERα and ERβ mRNA and protein expression, respectively. Results Relative to the (untreated) OVX group, EA treatment significantly increased the uterine wet weight to body weight (UWW/BW) ratio (0.47±0.04 vs 0.31±0.03 g/kg, p=0.04), and myometrial thickness (109.39±10.71 vs 60.81±8.1 μm, p=0.016) of OVX rats. Similarly, the total number of endometrial glands per cross section and endometrial thickness in the OVX +EA group was significantly increased compared to the (untreated) OVX group. EA treatment also increased protein (but not mRNA) expression of both ERα and ERβ in the uteri of OVX rats. Conclusions This study has demonstrated that EA treatment decreases uterine atrophy in OVX rats. This unique effect of EA on the uterus may be due to upregulation of serum levels of E2 and differential regulation of sex steroid receptors ERα and ERβ.

Publisher

SAGE Publications

Subject

Neurology (clinical),Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3