Electroacupuncture Protects against Articular Cartilage Erosion by Inhibiting Mitogen-Activated Protein Kinases in a Rat Model of Osteoarthritis

Author:

Liao Ying1,Li Xinhong2,Li Neng1,Zhou Jun1

Affiliation:

1. Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China

2. Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, People's Republic of China

Abstract

Objective The therapeutic effects of electroacupuncture (EA) on osteoarthritis (OA) are well documented; however, the precise mechanisms of action have not yet been fully elucidated. The present study aimed to investigate the effect of EA on cartilage in an experimental animal model of OA induced by anterior cruciate ligament transection (ACLT) and to examine for concomitant changes in the expression of mitogen-activated protein kinases (MAPKs) in the articular cartilage. Methods Thirty-three-month-old male Sprague Dawley rats were randomly divided into the following three groups (n=10 each): sham operated group (Control group), ACLT without treatment (ACLT group), and ACLT with EA treatment (ACLT+EA group). One week after ACLT, rats in the ACLT+EA group received 12 weeks of EA treatment. Histological analysis and quantitative real-time PCR were used to investigate the effects of EA on cartilage morphology (quantified using modified Mankin scores) and expression of MAPKs (p38, c-Jun N-terminal kinase (c-Jun), and extracellular signal-regulated kinase (ERK)1), respectively. Results ACLT produced coarse cartilage surfaces, fibrous degeneration, and fissuring, all of which were suppressed by EA treatment. Although Mankin scores in the ACLT+EA group were significantly higher compared to the Control group (p<0.01), they were significantly lower than the (untreated) ACLT group (p<0.01). The increase in mRNA expression of p38, c-Jun, ERK1, and matrix metalloproteinase (MMP)-13 observed in cartilage after ACLT was significantly inhibited by EA. Conclusions EA appears to prevent the degeneration of articular cartilage, at least partly through regulation of MMP-13 and inhibition of MAPKs in the cartilage of rats with ACLT-induced OA.

Publisher

SAGE Publications

Subject

Clinical Neurology,Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3