‘Super boots’ for soldiers: theoretical ergogenic and thermoprotective benefits of energetically optimised military combat boots

Author:

Ryan Benjamin J,Spiering BA,Hoogkamer W,Looney DPORCID

Abstract

Soldiers typically perform physically demanding tasks while wearing military uniforms and tactical footwear. New research has revealed a substantial increase of ~10% in energetic cost of walking when wearing modern combat boots versus running shoes. One approach to mitigating these costs is to follow in the footsteps of recent innovations in athletic footwear that led to the development of ‘super shoes’, that is, running shoes designed to lower the energetic cost of locomotion and maximise performance. We modelled the theoretical effects of optimised combat boot construction on physical performance and heat strain with the intent of spurring similarly innovative research and development of ‘super boots’ for soldiers. We first assessed the theoretical benefits of super boots on 2-mile run performance in a typical US Army soldier using the model developed by Kipp and colleagues. We then used the Heat Strain Decision Aid thermoregulatory model to determine the metabolic savings required for a physiologically meaningful decrease in heat strain in various scenarios. Combat boots that impart a 10% improvement in running economy would result in 7.9%–15.1% improvement in 2-mile run time, for faster to slower runners, respectively. Our thermal modelling revealed that a 10% metabolic savings would more than suffice for a 0.25°C reduction in heat strain for the vast majority of work intensities and durations in both hot-dry and hot-humid environments. These findings highlight the impact that innovative military super boots would have on physical performance and heat strain in soldiers, which could potentially maximise the likelihood of mission success in real-world scenarios.

Publisher

BMJ

Reference31 articles.

1. Army physical demands study: development of the occupational physical assessment test for combat arms soldiers;Foulis;J Sci Med Sport,2017

2. Carter R , Cheuvront SN , Young AJ , et al . Environmental stressors during military operations. In: Mineral Requirements for Military Personnel. 2006: 315.

3. Department of the Army . TB MED 507: Heat Stress Control and Heat Casualty Management. Washington, DC: Headquarters Department of the Army, 2022.

4. Effects of modern military footwear on the oxygen costs of walking in US army personnel;Lavoie;Footwear Science,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3