Abstract
BackgroundWhile global newborn hearing screening programmes (NHSP) are far from the optimal level, the combined hearing and genetic screening has emerged as an innovative approach of early healthcare interventions. There is a clear need for economic evaluation to establish whether newborn deafness gene screening (NDGS), currently mandated by many cities in China, is a good investment.MethodsA decision-tree model was constructed to simulate a hypothetical 10-million Chinese newborn cohort over a lifetime with three strategies: (1) no screening, (2) NHSP (standard screening) and (3) NHSP+NDGS (combined screening). The presence of permanent congenital hearing loss (PCHL) and genetic mutation were assigned at birth and held constant for all strategies. Input parameters were obtained from the Cohort of Deafness-gene Screening study and literature review. The government contract price for genetic screening was US$77/child. Outcomes of interest included the number of early diagnosed PCHL, prelingual deafness, total deafness, special education referral, incremental cost-effectiveness ratio (ICER) and benefit–cost ratio (BCR).ResultsBoth standard and combined screening strategies were more effective and more costly than ‘no screening’. Compared with standard screening, combined screening led to 9112 (28.0%) more PCHL cases early detected, avoiding 4071 (66.9%) prelingual deafness cases and 3977 (15.6%) special education referrals. The ICER and BCR for combined screening were US$ 4995/disability-adjusted life-year (95% uncertainty interval, 2963 to 9265) and 1.78 (1.19 to 2.39), from healthcare sector perspective. Combined screening would dominate standard screening from societal perspective. Moreover, it remained cost-effective even in pessimistic scenarios.ConclusionsOur findings have particular implication for the ‘scale-up’ of genetic screening at the national level in China. The model may serve as a feasible example for hearing screening strategies in other countries, as well as genetic screening for other diseases.
Funder
Science and Technology Project of Nantong City
Jiangsu Provincial Key Research and Development Program
Research and Development Program of China