Random forest approach for determining risk prediction and predictive factors of type 2 diabetes: large-scale health check-up data in Japan

Author:

Ooka TadaoORCID,Johno Hisashi,Nakamoto Kazunori,Yoda Yoshioki,Yokomichi Hiroshi,Yamagata Zentaro

Abstract

IntroductionEarly intervention in type 2 diabetes can prevent exacerbation of insulin resistance. More effective interventions can be implemented by early and precise prediction of the change in glycated haemoglobin A1c (HbA1c). Artificial intelligence (AI), which has been introduced into various medical fields, may be useful in predicting changes in HbA1c. However, the inability to explain the predictive factors has been a problem in the use of deep learning, the leading AI technology. Therefore, we applied a highly interpretable AI method, random forest (RF), to large-scale health check-up data and examined whether there was an advantage over a conventional prediction model.Research design and methodsThis study included a cumulative total of 42 908 subjects not receiving treatment for diabetes with an HbA1c <6.5%. The objective variable was the change in HbA1c in the next year. Each prediction model was created with 51 health-check items and part of their change values from the previous year. We used two analytical methods to compare the predictive powers: RF as a new model and multivariate logistic regression (MLR) as a conventional model. We also created models excluding the change values to determine whether it positively affected the predictions. In addition, variable importance was calculated in the RF analysis, and standard regression coefficients were calculated in the MLR analysis to identify the predictors.ResultsThe RF model showed a higher predictive power for the change in HbA1c than MLR in all models. The RF model including change values showed the highest predictive power. In the RF prediction model, HbA1c, fasting blood glucose, body weight, alkaline phosphatase and platelet count were factors with high predictive power.ConclusionsCorrect use of the RF method may enable highly accurate risk prediction for the change in HbA1c and may allow the identification of new diabetes risk predictors.

Funder

Japan Society for the Promotion of Science

Publisher

BMJ

Subject

Nutrition and Dietetics,Medicine (miscellaneous),Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3