Whole-exome sequencing reveals causative genetic variants for several overgrowth syndromes in molecularly negative Beckwith-Wiedemann spectrum

Author:

Higashimoto Ken,Sun Feifei,Imagawa Eri,Saida Ken,Miyake Noriko,Hara Satoshi,Yatsuki Hitomi,Kubiura-Ichimaru Musashi,Fujita Atsushi,Mizuguchi Takeshi,Matsumoto NaomichiORCID,Soejima HidenobuORCID

Abstract

BackgroundBeckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored.MethodsWe conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES.ResultsTen patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features.ConclusionMolecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.

Funder

Young and Middle-aged Scientific and Technological Innovation Talent Support Project of Shenyang City

Liaoning Province Medical-Industrial Crossover Joint Fund

The Second Clinical College of China Medical University Educational Innovation (Open) Project

Japan Society for the Promotion of Science

345 Talent Project

Japan Agency for Medical Research and Development

Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatrics

Ministry of Health, Labour and Welfare

Scientific and Technological Innovation Talent Support Project of Shenyang City

Takeda Science Foundation

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3