Urinary metals and incident diabetes in midlife women: Study of Women’s Health Across the Nation (SWAN)

Author:

Wang XinORCID,Karvonen-Gutierrez Carrie A,Herman William H,Mukherjee Bhramar,Harlow Siobán D,Park Sung KyunORCID

Abstract

IntroductionEnvironmental exposure to metals may play a role in the pathogenesis of diabetes; however, evidence from human studies is limited. We prospectively evaluated the associations of 20 urinary metal concentrations and their mixtures with incident diabetes in the Study of Women’s Health Across the Nation, a multisite, multiethnic cohort study of midlife women.Research design and methodsThe sample included 1237 white, black, Chinese and Japanese-American women, aged 45–56 years, free of diabetes at baseline (1999–2000) who were followed through 2016. Concentrations of 20 metals (arsenic, barium, beryllium, cadmium, cobalt, chromium, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, tin, thallium, uranium, vanadium, tungsten and zinc) were measured in urine specimens at baseline. Incident diabetes was identified annually by fasting glucose ≥126 mg/dL, self-reported doctor-diagnosed diabetes, or self-reported use of antidiabetic medications. A non-parametric clustering method, k-means clustering, was used to identify subgroups with different exposure patterns to metal mixtures.ResultsAfter multivariable adjustment, the HR (95% CI) for diabetes associated with each doubling increase in urinary metal concentrations was 1.19 (1.10 to 1.30) for arsenic and 1.20 (1.05 to 1.37) for lead, in Cox proportional hazards models after controlling for multiple comparisons. A doubling in urinary excretion of zinc was associated with higher risk of diabetes (adjusted HR 1.31, 95% CI 1.11 to 1.53). Two distinct exposure patterns to metal mixtures—‘high’ versus ‘low’—were identified. Participants assigned to the ‘high’ pattern had higher overall concentrations of all metals compared with those classified into the ‘low’ pattern. Adjusted HR for diabetes associated with ‘high’ pattern compared with ‘low’ was 1.42 (1.08 to 1.87).ConclusionsHigher urinary concentrations of arsenic and lead, increased urinary excretion of zinc, as well as higher overall exposure to metal mixtures were associated with elevated risk of diabetes. Future studies should further investigate the underlying mechanisms.

Funder

Clinical and Translational Science Institute, University of California, San Francisco

National Institute of Nursing Research

National Institute for Occupational Safety and Health

National Institute of Environmental Health Sciences

National Institute on Aging

Publisher

BMJ

Subject

Endocrinology, Diabetes and Metabolism

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3