Comparison of several survey-based algorithms to ascertain type 1 diabetes among US adults with self-reported diabetes

Author:

Casagrande Sarah SORCID,Lessem Sarah E,Orchard Trevor J,Bullard Kai McKeever,Geiss Linda S,Saydah Sharon H,Menke AndyORCID,Imperatore Giuseppina,Rust Keith F,Cowie Catherine C

Abstract

IntroductionDefining type of diabetes using survey data is challenging, although important, for determining national estimates of diabetes. The purpose of this study was to compare the percentage and characteristics of US adults classified as having type 1 diabetes as defined by several algorithms.Research design and methodsThis study included 6331 respondents aged ≥18 years who reported a physician diagnosis of diabetes in the 2016–2017 National Health Interview Survey. Seven algorithms classified type 1 diabetes using various combinations of self-reported diabetes type, age of diagnosis, current and continuous insulin use, and use of oral hypoglycemics.ResultsThe percentage of type 1 diabetes among those with diabetes ranged from 3.4% for those defined by age of diagnosis <30 years and continuous insulin use (algorithm 2) to 10.2% for those defined only by continuous insulin use (algorithm 1) and 10.4% for those defined as self-report of type 1 (supplementary algorithm 6). Among those defined by age of diagnosis <30 years and continuous insulin use (algorithm 2), by self-reported type 1 diabetes and continuous insulin use (algorithm 4), and by self-reported type 1 diabetes and current insulin use (algorithm 5), mean body mass index (BMI) (28.6, 27.4, and 28.5 kg/m2, respectively) and percentage using oral hypoglycemics (16.1%, 11.1%, and 19.0%, respectively) were lower than for all other algorithms assessed. Among those defined by continuous insulin use alone (algorithm 1), the estimates for mean age and age of diagnosis (54.3 and 30.9 years, respectively) and BMI (30.9 kg/m2) were higher than for other algorithms.ConclusionsEstimates of type 1 diabetes using commonly used algorithms in survey data result in varying degrees of prevalence, characteristic distributions, and potential misclassification.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

BMJ

Subject

Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3